
Gaining knowledge from
tests

UCSF NS Orientation 2024 — Stats II

Maxine Collard



A clairvoyant mouse?



A clairvoyant mouse?

You look at your data, and you see that you reject the null
hypothesis that manipulated mice do not predict the future
with a -value of 0.014.p

What do you do with this information?



Let’s think about it another
way
 

N.B.: This example was originally made in September
2021, and has become less relatable over time.



Let’s think about it another way

For the last four weeks, you’ve been doing nothing but
sitting in your room alone studying for your qualifying exam,
with absolutely zero human contact.

You take it and pass—hooray!



Let’s think about it another way

But while you’ve been away studying, UCSF has announced
a new policy requiring all graduate students to be tested for
Covid-19 daily. You must provide a negative test result
before entering any research building on-campus!

No, not really.

You grab a test from one of the Color vending machines and
wait at home for the results to come back. The next day, you
get an email:



 

SARS-CoV-2 mRNA:

 

 

DETECTED

Do you think you have Covid?

Why do you think that?



Let’s try a simulation!



The scenario
N.B.: SF no longer tracks Covid case rates, so I’ll be using
last year’s numbers.

Current rolling average for reported Covid cases in San
Francisco: ~65 per day.

SF’s population is ~815,000. So, reported incidence of
Covid in SF: ~7.97 per 100,000 per day.

Let’s aim high: assume Covid incidence is 4x reported:
~31.88 per 100,000 per day.



The scenario
 

To get to prevalence, let’s assume everyone infected has
Covid for 14 days.

So, ballpark prevalence of Covid in SF: ~111.6 per
100,000.

If you were to pick a person at random from San
Francisco with no other knowledge, this would be about
the chance of picking someone who currently has Covid.



 

 

# September 2021 (using reported case count)1
# covid_prevalence = 350 / 1000002

3
# August 2022 (using reported case count)4
# covid_prevalence = 288.4 / 1000005

6
# September 2023 (using 4x reported case count)7
# covid_prevalence = 446.32 / 1000008

9
# September 2024 (no more case counts, using 2023 data)10
covid_prevalence = 446.32 / 10000011



Recall
 

The -value is defined by thinking about what our
observations would be by chance if we presuppose that the
null hypothesis is in fact true:

p

p = Pr(we observe a difference ∣ there is no difference)

This is convenient to use, because we can always impose
the null hypothesis by shuffling our data. This is called
permutation testing.



 



 



Usually, diagnostic tests are evaluated kind of like -values:
we use measures that ask how the test behaves when we
pre-suppose the truth.

p

Sensitivity measures the probability that a person tests
positive given that they actually have the disease:

sensitivity := Pr(test + ∣ actually +)

Specificity measures the probability that a person tests
negative given that they actually do not have the disease:

specificity := Pr(test − ∣ actually −)



 



N.B.: The -value can be thought of asp

p = Pr(test + ∣ actually −)

Because there are only two test outcomes,  and , this
means that

+ −

p =
=

1 − Pr(test − ∣ actually −)
1 − specificity

So, the -value is in the same “family” of measures about
a test as sensitivity and specificity.

p



Back to the code
Let’s suppose that the currently used RT-PCR test for Covid
has approximately the following characteristics:

# September 20211
# rtpcr_sensitivity = 0.7772
# rtpcr_specificity = 0.9883

4
# August 20225
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350782/6
rtpcr_sensitivity = 0.7337
# https://www.uptodate.com/contents/covid-19-diagnosis8
rtpcr_specificity = 0.979

10
# September 2023: These characteristics haven't appreciably changed11

12
# September 2024: "13

N.B.: Finding accurate values is challenging in practice.



N.B.: We can compute the -value of this test using the
formula from earlier, :

p
1 − specificity

print( f'> $p$ = **{1 - rtpcr_specificity:0.4f}**' )1

 = 0.0300p



You just got a positive test
 

What do the sensitivity and specificity tell you?



You already know that you’ve tested positive. What you
would like to infer is whether or not you actually have Covid.

 

 

Sensitivity and specificity do not tell you this.
And so, neither do -values!p

What you want to know are the quantities with the opposite
conditioning:

p = Pr(test + ∣ actually −)

? = Pr(actually + ∣ test +)



 



Positive predictive value is the probability one actually has
the disease given a positive test result:

PPV := Pr(actually + ∣ test +)

Now that you have a positive Covid test, the PPV is the
probability that you actually have Covid.

Negative predictive value is the probability one actually
does not have the disease given a negative test result:

NPV := Pr(actually − ∣ test −)



 



What do you think are the PPV and NPV
for the RT-PCR test?



N.B.: Always write docstrings for your code:

help( sample_results )1

Help on function sample_results in module __main__:

sample_results(n, prevalence, sensitivity, specificity)
    Sample disease presence and test results with the given characteristics

    Arguments:
    n -- The number of individiuals to sample
    prevalence -- The probability of finding the actual disease in the 
population
    sensitivity -- The probability of testing positive given one has the 
disease
    specificity -- The probability of testing negative given one does not have 
the disease

    Reutrns:
    has_disease -- Shape (n,), whether each individual has the disease
    test_results -- Shape (n,), whether each individual tests positive for the 
disease



Let’s simulate one day of Covid tests at UCSF:
# Approximately the number of employees at UCSF1
n_employees = 240002
# Run our simulation and grab the results3
# (See code for the slides online)4
has_covid, rtpcr_positive = sample_results( n_employees,5
                                            covid_prevalence,6
                                            rtpcr_sensitivity,7
                                            rtpcr_specificity )8
# If I put an f in front of my string, I can use curly braces to9
# put Python code inside of it10
print( f'> Cases today: **{np.sum( has_covid )}**\\' )11
print( f'> Positive tests today: **{np.sum( rtpcr_positive )}**' )12

Cases today: 109
Positive tests today: 811

Clearly something funky is going on: there are way more
positive tests than cases!



As is always good practice, let’s take a look at a subsample of
the raw data:

# Subplots allows us to lay out some axes (`ax`) inside of a1
# figure (`fig`) that we can manipulate later2
fig, ax = plt.subplots( figsize = (12, 1.2) )3

4
# Use the plotting function we just made on these axes5
# (See code for the slides online)6
sample_plot( ax, has_covid, rtpcr_positive )7

8
# We're all done building the plots, we want to displaly them now9
plt.show()10

By eye, it definitely looks like there are a lot of false positives.



What are the PPV and NPV?

 
# (See code for the slides online)1
ppv_naive, npv_naive = predictive_value( has_covid, rtpcr_positive )2

3
# We can do math in our curly braces; here I convert the ratios into4
# percents. The `:0.2f` at the end tells Python that I want 2 digits5
# after the decimal point (not at all intuitive; blame the C people6
# who wrote the original `printf` function).7
print( f'> Naive PPV: **{ppv_naive * 100:0.2f}%**\\' )8
print( f'> Naive NPV: **{npv_naive * 100:0.2f}%**' )9

Naive PPV: 9.86%
Naive NPV: 99.87%



Let’s talk about the good news first:

A negative test is extremely informative: if you receive a
negative test result, you can say with almost certainty that
you are in the clear.

And now, the bad news:

In this setup, a positive test is not very informative: in fact,
if you were to receive a positive RT-PCR test, there is a
~90% chance that you still don’t have Covid.

Put another way, more than 9 out of every 10 positive
tests are actually false positives.



Do you think this will scale well?

 

Suppose quarantine lasts for 10 days (8 work days). What
fraction of the workforce would have to be quarantining at
any given moment from false positive tests alone?

# 10 days is the policy, but a couple of those will be a weekend1
quarantine_workdays = 82
# False positives *do not* have Covid *and* test positive3
quarantine_fp_per_day = np.sum( ~has_covid & rtpcr_positive )4
quarantine_fp_simultaneous = quarantine_fp_per_day * quarantine_workdays5
quarantine_fraction = quarantine_fp_simultaneous / n_employees6

7
print( f'> Fraction of workforce quarantined: **{quarantine_fraction * 100:0.2f}%**' )8

Fraction of workforce quarantined: 24.37%



But, n.b.! This test also has an extremely high accuracy—that
is, the probability of the test being correct:

# == operates element by element on arrays1
# `a == b` is an array where each element is `True` if the2
# corresponding elements of `a` and `b` are equal3
accuracy_naive = np.sum( has_covid == rtpcr_positive ) / len( has_covid )4

5
print( f'> Naive accuracy: **{accuracy_naive * 100:0.2f}%**' )6

Naive accuracy: 96.83%

The accuracy of the test is hiding the fact that we’re actually
doing quite a terrible job with the positive predictive value—
the much more actionable piece of information—because
the prevalence of Covid cases is so low!



What’s going wrong?
 

Is this a bad test?
 

Do you still think you have Covid?



A better way to use Covid
tests



A better way to use Covid tests

 

In our simulation, the prevalence of Covid was thought of as
the probability that someone in our sample had Covid. We
took this to be the prevalence of Covid in San Francisco,
under the assumption that we were testing people
essentially randomly, and had no criteria for how we were
selecting people to test.



A better way to use Covid tests

After briefly quarantining a substantial portion of its
workforce, UCSF has decided to try a new Covid testing
schema.

In medicine, we call this “continual improvement”!

Now, only people who have an exposure to a confirmed
symptomatic case will be tested.



A better way to use Covid tests

Before, we had no clue about the people being tested. This
new criterion means we have more knowledge (of the
exposure).

This knowledge changes our prior belief—before even
running the test!—of whether or not the person being tested
has Covid: we expect that someone who has had an exposure
is more likely to have Covid than someone random from the
general population.



A better way to use Covid tests

All of the characteristics of the test itself are still exactly
the same—the same reagents, the same technique,
everything.

The only thing we’ll change to simulate this new scenario is
the proportion of tested people who have Covid.

Let’s say that an exposure to a symptomatic case of Covid
carries an associated risk of infection of 5%:

covid_belief_sus = 0.051



What do you think will happen to the PPV
of our test in this new scheme?

 

How about the NPV?



Let’s run a simulation of a group of employees with
suspected Covid exposure:

n_sus = 10001
has_covid_sus, rtpcr_positive_sus = sample_results( n_sus,2
                                                    covid_belief_sus,3
                                                    rtpcr_sensitivity,  # Same as before!4
                                                    rtpcr_specificity ) # Same as before!5

6
# Python is fully Unicode compatible for strings, so there's no7
# reason not to include emoji 8
print( f'> Cases among the suspicious : **{np.sum( has_covid_sus )}**\\' )9
print( f'> Positive tests among the suspicious : **{np.sum( rtpcr_positive_sus )}**' )10

11
# You can't use emoji in variable names, though 12
# Got to switch to Haskell for that ...13

Cases among the suspicious : 35
Positive tests among the suspicious : 51



Dummy check, round 2

fig, ax = plt.subplots( figsize = (12, 1.2) )1
sample_plot( ax, has_covid_sus, rtpcr_positive_sus )2
plt.show()3



Already this is looking much more reasonable. What are the
PPV and the NPV?

ppv_sus, npv_sus = predictive_value( has_covid_sus, rtpcr_positive_sus )1
2

print( f'> Suspicious PPV: **{ppv_sus * 100:0.2f}%**\\' )3
print( f'> Suspicious NPV: **{npv_sus * 100:0.2f}%**' )4

Suspicious PPV: 45.10%
Suspicious NPV: 98.74%



Aha!

 

The PPV has jumped dramatically, from about 10% to about
60%!

In this setting—where we have some additional knowledge
about who we’re testing—the same exact test has become a
lot more useful.



 



N.B.: There is no free lunch, of course!

The cost we pay is that the NPV in this scenario is now
slightly lower!



The critical takeaway message is this:

How useful a test is depends on our prior belief
about the thing we’re testing for.



How much knowledge do we need?

Let’s see how this whole picture plays out as we “sweep
through” a bunch of different possible priors.



# (See code in slide repo for implementations)1
2

# Run our simulation3
# Pick beliefs linearly spaced between 0 and 0.254
covid_beliefs_sweep = np.linspace( 0, 0.25, 100 )5
ppvs_sweep, npvs_sweep = belief_sweep( rtpcr_sensitivity,6
                                       rtpcr_specificity,7
                                       covid_beliefs_sweep )8
# Build our plot9
fig, ax = plt.subplots( figsize = (12, 4) )10
plot_sweep( ax, covid_beliefs_sweep, ppvs_sweep, npvs_sweep,11
            annotations = [(covid_prevalence, 'k--', 'Random testing'),12
                           (covid_belief_sus, 'm--', 'Testing after confirmed exposure')],13
            xlabel = 'Prior belief of Covid' )14
plt.show()15



In this example, we saw that the PPV of our Covid test
depended strongly on the scheme we used to select which
people to test, even while the test itself remained entirely
the same.

From the previous slide, even very weak improvements in
our prior belief can lead to vast changes in the utility of our
test!

This means that PPV is not just a statement about the test.

PPV is a statement about how the test is used.



What does a test do?



What does a test do?

 

Before we ran the test, we had some prior knowledge about
whether we had Covid:

Pr(actually +)



What does a test do?
When we get new knowledge—the result of the test—we
update our belief of whether we have Covid. Our knowledge
about whether we have Covid after the update caused by the
test is precisely the PPV:

This is also known as the posterior probability (as in, the
probability that we have after) given a positive test.

Pr(actually +)
↓

Pr(actually + ∣ test +)



 



N.B.: The amount of information provided by a test result
is called the result’s Bayes factor, .K
While the PPV—which is the posterior probability of
disease given a positive test—changes depending on the
prior, the following ratios are always proportional:

= KPr(actually + ∣ test +)
Pr(actually − ∣ test +)

Pr(actually +)
Pr(actually −)

So, the Bayes factor tells us how much receiving a
positive test result changes our prior belief. Test results
with larger Bayes factors change our beliefs more.



Tests in science



Tests in science
 

For Covid testing, we obtained some bit of noisy data (a
positive test result), and sought to infer something about
what was actually happening (whether we truly have Covid).

We made this inference quantitative using the Covid RT-
PCR test’s PPV:

PPV = Pr(actually + ∣ test +)



Tests in science

 

In science, we use statistical tests.

Just like the Covid RT-PCR, statistical tests are noisy bits of
data. What we would like to do is to infer something about
what is actually happening in the world on the basis of these
test results.



Example—Correlation
Let’s say that you’re analyzing some data. You plug two
variables you’re working on, x and y, into a magic black box
like scipy.stats.pearsonr, and it pops out:

 
>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

(The first value is the correlation , the second is the -
value.)

r p

Cool, it’s significant! We got a positive test result.



Example—Correlation
 

Given this:

 
… what do you now know about whether there is
actually a relationship between x and y?

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2



Example—Correlation
 

This information, by itself, is not a statement about whether
the null hypothesis is actually true or false—just as a
positive Covid test is not, by itself, a statement about
whether you actually have Covid.

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

 

We must infer the truth from the test
What does this inference depend on?



Example—Correlation
 

With our shiny positive test result, what we really care
about is the posterior probability, given we saw this test
result, of whether there is a relationship between x and y.
This is precisely the PPV:

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

PPV := Pr(actually a relationship ∣ test rejects null hyp.)



Example—Correlation
 

But, just as before with Covid RT-PCR,

PPV depends on our prior knowledge of whether
there is a real relationship between x and y—
not just the characteristics of pearsonr!

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

PPV := Pr(actually a relationship ∣ test rejects null hyp.)



Example—Correlation
 

Suppose I got this result by going out into the world and
running the pearsonr function between every pair of two
datasets I could get my hands on.

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

What is the probability that any two of those randomly
chosen datasets are actually causally related to one
another? That is, what is the prior,

Pr(actually a relationship)



Example—Correlation
 

 

What is the probability that any two of those randomly
chosen datasets are actually causally related to one
another? That is, what is the prior,

It is astronomically small.

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

Pr(actually a relationship)



Example—Correlation
 

 

In this experimental setup of randomly testing correlations,
what is the PPV?

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

 

It is exceedingly low.



Example—Correlation
 

 

So, how do I interpret this result I just saw, that pearsonr
rejected the null hypothesis of no relationship between x
and y?

>>> scipy.stats.pearsonr( x, y )1
(0.21365304326850618, 0.03281172835181021)2

 

It is probably a false positive.



Does that mean that
scipy.stats.pearsonr is a bad test?

 

Is Covid RT-PCR a bad test?



No. 
 

PPV isn’t just about the test.

PPV depends on how the test is used.



Recall
When looking at Covid testing, increasing our prior belief of
Covid infection to just 5% raised the PPV from 5% to 60%,
for the exact same test. To make the test’s results more
meaningful, we used knowledge of prior exposure to Covid
to choose who to test.



Even very weak information can dramatically
improve the utility of a test!
 

So, how do you improve the positive predictive value of
testing for significant correlations?

Choose the right questions to ask.



A clairvoyant mouse?
 

You look at your data, and you see that you reject the null
hypothesis that manipulated mice do not predict the future
with a -value of 0.014.p
 

What do you now know about whether the mouse is actually
clairvoyant?
 

Why do you think this?



A clairvoyant mouse?
 

You look at your data, and you see that you reject the null
hypothesis that manipulated mice do not predict the future
with a -value of 0.014.

 

What do you do with this information?

p



Summary



Tests do not tell
us the truth.

 

We try to infer the truth from tests.



Because we live in a special part of the
multiverse—the part where we saw
what we saw!

 

Tests update our
beliefs about the
world.



 

The predictive
value of a test
depends on how
the test is used.

In particular, it depends on our prior
knowledge of what we are testing for.



Statistical testing is not just a matter of selecting
the “correct” test for a given question.
 

Being judicious about selecting the correct questions to
apply the test to is a more powerful way to

strengthen the inferences gained through statistics;

improve the reproducibility of science; and

more responsibly use resources, like experimental
animals, that we have an ethical obligation to minimize.


